
ontractor

Radar

rater

//

N92-32606

Unclas

H1/O.3 0116916

I I

I

- _ ----.

I

I

_ 7"_ -= -'" "-7_ -'- _

NASA Contractor Report 4456
DOT/FAA/RD-92/20

Real-Time Processing of Radar

Return on a Parallel Computer

David D. Aalfs

Radar Systems Laboratory

Electrical and Computer Engineering Department

Clemson University

Clemson, South Carolina

Prepared for

Langley Research Center

under Grant NGT-50414

NA. A
National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Program

1992

TABLE OF CONTENTS

LIST OF FIGURES

ACKNOWLEDGMENTS

CHAPTER

1 INTRODUCTION

The Microburst

Pulse Doppler Radar

Principles of Operation
Microburst Detection

Signal Processing

Parallel Processing

Problem Statement

2 COMPUTATIONAL REQUIREMENTS

Radar Parameters

Algorithms

3 CONCURRENT PERFORMANCE

Communication Overhead

Speedup Measures and Efficiency

4 THE TRANSPUTER

Transputer Architecture

Microprocessor and Memory
Links

Occam Model of Concurrent Processing

Primitive Processes and Channels

Constructions

Real Time Issues

Page

v

vii

1

5

5

11

13

15

17

19

20

21

28

28

31

33

33

36

37

38

39

40

41

iii

I.,_INIENTIOI_,li_ t3i.._,g_ PRECEDING PAGE BLANK NOT FILMED

Table of Contents (Continued)

Page

! :

CONCURRENT PROCESSING IMPLEMENTATION 44

Algorithms 44

Pulse-Pair Estimator 44

Fast Fourier Transform 45

Autoregressive Modeling 46

Hardware •.................... 48

Benchmarks 48

Fast Fourier Transform 51

Autoregressive Model 52

Speedup 54

6 CONCLUSIONS 56

APPENDICES 59

A. Radar Parameters 60

B. Occam Software Listing 61

REFERENCES 73

iv

LIST OF FIGURES

Figure Page

1.1 Symmetric Microburst 2

1.2 "S'-curve for a simulated microburst 4

1.3 "F'-factor hazard index 6

1.4 Block Diagram of a Doppler radar 7

1.5 Transmitted signal for a pulse Doppler radar 9

1.6 Gated return for a pulse Doppler radar 9

1.7 Doppler return from a moving target 10

1.8 Doppler power spectrum of a Gaussian process 12

1.9 Doppler power spectrum of a typical range cell 14

2.1 Algorithm Suite I Flow Diagram 23

2.2 Algorithm Suite II Flow Diagram 24

2.3 Algorithm Suite III Flow Diagram 25

2.4 Algorithm Suite IV Flow Diagram 26

2.5 Performance Parameters 27

4.1 Transputer architecture 34

4.2 Examples of transputer networks 35

4.3 Transputer family statistics 37

5.1 Block diagram of the transputer evaluation set-up...... 49

5.2 Range cell display 50

5.3 FFT benchmarks with pruning 51

5.4 FFT benchmarks with no zero padding 52

5.5 Autoregressive modeling benchmarks 53

5.6 Speedup and efficiency measurements 54

V

List of Figures (Continued)

Page

Plot of speedup

Radar Parameters

55

60

!

f

T

f
[

vi

i
m

m

ACKNOWLEDGMENTS

The author would like to express his gratitude to Dr. E. G. Baxa for his valuable

guidance and encouragement. He also thanks Dr. J. J. Komo and Dr. F. M. Cholewin-

ski for sacrificing the time to serve as committee members.

The National Aeronautics and Space Administration is to be thanked for its fi-

nancial support under the Graduate Student Researchers Program and for supplying

the INMOS Transputer hardware and software used in this research. Special thanks

are extended to the Antenna and Microwave Research Branch at Langley Research

Center for their technical support and to Corey Gehman and Jayanth Thyamagund-

lam for their advice and assistance.

Finally, he expresses his appreciation to his wife and family for their patience

and support throughout his graduate studies.

vii

CHAPTER 1

INTRODUCTION

1.1 The Microburst

Since the late 1970's, a form of low altitude windshear, called a microburst,

has become recognized as a significant hazard to aircraft during takeoff and landing.

The term microburst was first used by Fujita to describe a rapid downflow of air

that upon impacting the ground forms a horizontal outflow extending less than 4

km in diameter (Figure 1.1) [1]. Observations of roughly 75 microbursts during

the Joint Airport Weather Studies (JAWS) Project conducted at Denver's Stapleton

International Airport in 1982 revealed that they have a relatively short life span,

usually less than 15 minutes, with severe shear lasting only 2 to 4 minutes. Within

that small window of time and distance, however, headwind to tailwind differentials

can approach 100 MPH. Under such conditions, a pilot may have less than 30 seconds

to make a successful recovery [2].

Typically, when an aircraft encounters a microburst at low altitude, it first experi-

ences a performance increasing headwind, followed by a severe downdraft, and finally

a performance decreasing tailwind. The rapid loss of altitude caused by the down-

draft and the ensuing loss of altitude and airspeed due to the tailwind can bring an

aircraft too close to the ground with too little airspeed to escape a crash. It has been

determined from measurements taken in the JAWS Project that some microbursts

are so severe that once entered, there is no chance for recovery [2]. Compounding

the problem is the deceptively benign visual appearance of many microbursts. The

warning signs of a microburst can be as subtle as a column of rain associated with

the downdraft or, if the rain evaporates above the ground, packets of windblown dust

near the ground. It should be noted that windshear detection devices are presently

CIoud Base
, . _ / iooO.

1,/;.,.,,_ ,.,. _ i ! APDrOx

v._, _, I IIIIJ il',lI:lll , I $_e

.'1 Frent --_

/ _ \ H'_a ll,'/_,l_il_\\\ / "\ \
Vortex _ ,

f,,T ' t t i

Figure 1.1 Symmetric Microburst.

installed on some commercial aircraft, but these are so called reactive systems. Re-

active systems are based on in situ devices and can only detect a hazard once it has

been entered.

The need to provide advanced warning of windshear conditions has spurred a joint

effort between NASA and the FAA to develop a new generation of airborne Doppler

weather radar operating in the X-band (8-12GHz). Doppler weather radar is actually

one of several candidate sensors, including lidar and infrared, for a forward-looking

airborne microburst detector. Each of these sensors requires similar signal processing,

but they rely on different scattering mechanisms [3]. Since the predominant type of

scattering target may vary from small particles of dust in one microburst to droplets

of rain in another microburst, a combined system incorporating all three of the above

sensors may be necessary to provide reliable detection under all atmospheric condi-

tions. The upshot is that sophisticated signal processing will be necessary to identify

microbursts in real time.

Part of the signal processing effort involves isolating a "signature" for microbursts

that can be used to indicate potentially hazardous situations. The horizontal compo-

nent of the windspeed versus range for the headwind/downdraft/tailwind sequence

gives what is called the "S"-curve. Beginning at ranges nearest to the aircraft, the

windspeed has a large negative value in the headwind, diminishing to zero at the

heart of the downdraft, and becoming a large positive value in the tailwind. The

"S"-curve is a signature detectable by a pulse Doppler radar capable of estimating

average windspeed at various ranges. This sensor coupled with some form of pattern

recognition scheme may be able identify the "S'-curve due to a microburst in the

flight path. Figure 1.2 shows an "S"-curve generated by plotting mean windspeed es-

timates versus range for a simulated microburst generated by the Airborne Windshear

Doppler Radar Simulation (AWDRS) Program [4].

Another form of hazard indication that has gained wide acceptance is the "F"-

factor proposed by Bowles and Targ [5]. It is an index independent of the aircraft

3

15

10

5

v

.,-4
U
0

0
:>

-5

-10 ! 1

3 4

!

5

Range (kin)

u i

pulse-pair --

| !

6 7 B

Figure 1.2 "S"--curve for a simulated microburst.

)

__=-

IE

!

=-
=

i

:=

m

4

weight and thrust capability and is basedupon measurableatmosphericconditions.

The "F"-factor is definedas

where:

=

Wh =

g =

V =

F=
g V

spatial derivative of the horizontal component of wind velocity,

vertical component of wind velocity,

acceleration due to gravity,

the airspeed of the aircraft.

To get a feeling for what the "F'-factor means in physical terms, consider that

a positive spatial derivative of the horizontal wind velocity indicates an increasing

tailwind which has a performance decreasing effect, while a positive vertical wind

velocity indicates a performance increasing updraft. Threshold values for F have

been placed between 0.1 and 0.15 [5]. Figure 1.3 shows how "F'-factor can be

interpreted as an indicator of safe operation.

1.2 Pulse Doppler Radar

Pulse Doppler radar is a sensor of particular interest in the windshear detection

problem. This is not surprising since these instruments have been used for years in

meteorological research of storm dynamics,hydrology , and cloud and precipitation

physics [3, 6, 7, 8, 9].

1.2.1 Principles of Operation

The block diagram in Figure 1.4 shows the basic elements of a pulse Doppler

radar. Beginning with the transmitter, a high power amplifier is used to produce

a spectraily clean signal at a radio frequency ft. A pulse modulator switches the

amplifier on and off generating a train of pulses of duration r and separated by the

interpulse period (IPP), the reciprocal of the pulse repetition frequency (PRF). Figure

1.5 shows a conceptual drawing of the transmitted signal.

5

I Microburst 1
Hazard

I IncreasingTailWlnd

SAFE SAFE

Downdraft

SAFE SAFE

Increasing

Headwind

Figure 1.3 "F"-factor hazard index.

Updraft

F-factor

Threshold

w_
V

6

--IoscCO OtorI i

STALO

Oscillator

0oI

v

I I

Pulse

Modulator

Transmitter

Power

Amplifier

Duplexer

Antenna

Figure 1.4 Block Diagram of a Doppler radar.

7

At the antenna, the pulse train is radiated as electromagnetic energy which is

backscattered by targets in the path of the beam. In most cases, a single antenna is

shared by the transmitter and receiver to reduce the space, weight, and cost require-

ments. In a shared antenna radar, referred to as monostatic, a duplexer is used to

switch the antenna from the transmitter to the receiver during the period of time that

the amplifier is turned off, (IPP - r). After a small delay to assure decoupling from

the transmitter, the receiver "listens" for backscattered returns from the previous

pulse.

The range of a target can be determined by measuring the time it takes for a

pulse to travel to the target and have its reflected energy return to the receiver. The

receive time between pulses can then be divided into time segments called range cells

which indicate the range of returns that fall into a particular time interval (Figure

1.6). The maximum unambiguous range is given by

where c is the speed of light.

C

2PRF'

By taking advantage of the Doppler shift principle, a pulse Doppler radar can

also measure the radial velocity of a target. When an electromagnetic wave with

frequency ft is reflected by an object moving away from the radar platform at a

relative velocity v, the frequency seen at the receiver is shifted by

2v/,
d _ m_

C

Figure 1.7 illustrates the Doppler effect. The maximum unambiguous Doppler veloc-

ity is given by

With the aid of signal processing then, a pulse Doppler radar can map the radial

velocities of targets out to its maximum unambiguous range.

|

m
i

!

i

!
i
E

8

IPP

//

Figure 1.5 Transmitted signal for a pulse Doppler radar.

Transmit

Range Cells

//

Gated Receive Time

Figure 1.6 Gated return for a pulse Doppler radar.

9

| .

|

|

I
l

ft

I
TranSmitted Signal

Target

Negative Doppler Shift

@

i
Positive Doppler Shift

Figure 1.7 Doppler return from a moving target.

-V

@

l
!

lo

The targets that a weather radar is depending on as reflectors are windblown

particles such as rain, insects,dust, or changesin the refractive index. Scattering

targets that aresweptalongwith the air massand are illuminated by the radar pro-

vide information about the winds within the resolution volume. By the central limit

theorem, the return signal of a large number of randomly distributed targets can be

modelled by a narrowband Gaussian process. The effects of windshears, turbulence,

and antenna motion combine to broaden the Doppler spectral width, but do not in-

validate the Gaussian approximation [3, 10, 11]. Ideally, the Doppler power spectrum

might look like the one represented in Figure 1.8 where the mean represents the av-

erage radial velocity of particles in the illuminated volume and the variance is the

spread of the Doppler velocities. Estimates of these parameters are performed in the

signal processing portion of the radar.

1.2.2 Microburst Detection

The detection of microbursts with a pulse Doppler radar is complicated by several

factors. One of these factors is the low reflectivity levels exhibited by certain types

of microbursts. Preliminary research has been directed towards microbursts with

significant levels of precipitation known as wet microbursts [5, 12]. The classification

of wet and dry microbursts is rather qualitative, but a rainfall rate greater than 25

dBZ generally denotes a wet microburst and a rainfall rate less than 20 dBZ generally

denotes a dry microburst. The strong return levels from wet microbursts make them

the simplest case for evaluating various detection algorithms. Dry microbursts will

call for more sophisiticated signal processing since the primary sources of reflections,

particles of dust and insects, exhibit a much lower reflectivity of radar energy.

Along with the possibility of a low energy weather returns, the problem of mi-

croburst detection by an airborne radar is complicated by the presence of strong

ground return or clutter. When the aircraft is in low altitude flight, such as during

takeoff or landing, a portion of the antenna beam is likely to illuminate objects on

11

u

n

O

,-4
n
r_
o

i

0 5 I0 15 20

Radial Velocity (m/s)

i

Gaussian --

I

25 30

)
I
i

I
|

i

|

|
!
m

Figure 1.8 Doppler power spectrum of a Gaussian process.

12

the ground such as buildings, trees, or cars on a freeway. The return from these

powerful reflectors can utterly obliterate any returns due to weather [10]. Most of the

clutter energy appears around zero Doppler referenced to the aircraft ground speed

and is the result of strong returns from stationary objects through the main beam

of the antenna. Additional discrete clutter due to returns from moving objects on

the ground or returns from large objects through the antenna sidelobes may appear

at frequencies shifted away from zero Doppler. Figure 1.9 shows the Doppler power

spectrum of range cell data generated by the AWDRS program [4]. Notice the narrow

clutter mode located near 0 m/s and the broader weather mode located around 10

m/s. The clutter problem may be partially abated by tilting the antenna higher with

respect to the glide slope so that less of the beam is directed towards the ground, but

then the beam is directed more in the downdraft portion of the microburst, running

the risk of missing the highly characteristic horizontal outflow. The upshot is that

some form of clutter rejection digital filtering may be necessary to suitably enhance

the signal to clutter ratio [13, 14, 15].

1.2.3 Signal Processing

Estimation of weather parameters is typically performed on a per range cell basis.

To improve the accuracy of the estimate, sets of complex sampled data points are

collected from the radar IF output over a number of pulses for each range cell. The

number of points in each range cell record is determined by the length of time over

which the statistical properties of the targets can be assumed to be stationary.

The conventional approach to processing radar signals has been to use a series

of special purpose arithmetic units followed by a programmable microcontroller for

processing each range cell [16]. The typical stages of the range cell computation for

a pulse Doppler weather radar might include some form of clutter rejection, estima-

tion of the Doppler power spectrum and/or estimation of spectral parameters, and a

suitable detection algorithm. The most popular technique for computing the Doppler

13

o)
-o

.,4
r-
O_
_0

-95

-i00

-105

-110

A

-115
-125

-130

-135

-140

-145 I L ! I

-30 -20 -I0 0 i0 20

Windspeed {m/s)

3O

Figure 1.9 Doppler power spectrum of a typical range cell.

14

power spectrum is the fast Fourier transform (FFT) which has been implemented on

high speed, programmable digital signal processing (DSP) chips. The mean wind-

speed and spectral width can be computed from the Doppler power spectrum, or

obtained directly using the pulse-pair algorithm [17, 18, 19].

Since each of the range cells can be processed independently using the same set

of algorithms, this processor can operate on range cells in either pipeline fashion or

in parallel depending on the throughput requirements. To make the computation

fully parallel, a duplicate processing bank for each range cell is provided. Special

purpose hardware has been necessary until recently to achieve real time data rates.

A step towards greater flexibility has been made with the programmable DSP board

which takes advantage of multiple high speed DSP chips. Many of these boards are

programmable in high level Languages such as C. DSP boards are a powerful tool for

radar signal processing, but they are, to an extent, still special purpose devices, and

as such they can require significant development time. With the recent advances in

computer technology and parallel processing, it has become feasible to perform real

time radar signal processing on arrays of general purpose microprocessors.

1.3 Parallel Processing

Radar signal processing lends itself well to concurrent computation when the

problem is decomposed by range cells. This is a natural way to break down the com-

putation because interprocessor communication is unnecessary for range cell depen-

dent products. Message passing is only necessary for distributing the data throughout

the network and recollecting the results. In addition, a balanced computational load

across all the processors is assured when the range cells are equally distributed.

Within the sphere of concurrent processing, there are a number of issues to be

addressed. First consider the size of each individual processing element, known as the

grain size. The grain size will be dictated by the complexity of the necessary algo-

rithms and the memory requirements for each node. For the problem decomposition

i5

describedabove, eachelementwill be responsiblefor processingone or more range

cells, eachcomposedof a set of complexdata points . The sizeof the rangecell data

recordsand the needfor sophisticatedsignal processingalgorithms calls for a large

grain sizeparallel computer.

Next there is the choiceof Single Instruction Multiple Data (SIMD) or Multiple

Instruction Multiple Data (MIMD) architectures. On a SIMD machine,all the nodes

executethe samesequenceof instuctions on their respectivesetsof data. An example

of SIMD architecture is the systolic array where a number of special purpose small

grain elements are interconnected to perform a specific function such as matrix mul-

tiplication. This approach is reasonable for the radar application because each range

cell is to receive exactly the same processing, but typically these machines are small

grain size and/or massively parallel, consisting of 16K or more processors. A SIMD

computer with a smaller number of large grain size nodes is a feasible architecture,

but they are not generally available because for a large grain size a MIMD computer

can offer essentially the same processing capability with greater flexibility [20]. The

majority of large grain parallel computers are of the MIMD class where each node

stores and executes its own instruction set independently.

MIMD computers can further be classified as shared memory or distributed mem-

ory. Shared memory computers have a common bus and memory for all the nodes.

They use their memory more efficiently and are easier to program, but all the mi-

croprocessors have to compete for the same resources. This leads to bus contention,

severely limiting the number of processors possible for a potential system. With dis-

tributed memory, each node has its own local memory and bus, thereby eliminating

the problem of bus contention. Communication takes place through message passing,

which can only exist between nodes that are directly connected through links. Con-

ceptually, a shared memory machine can have "full interconnect" capability among

its processors by communicating through common memory locations [20]. However,

!

!
E

ll
m

J
|

16

there should be no significant drawback to the distributed memory machine as op-

posedto the sharedmemory machinein this respect for the radar signal processing

application, sincevery little interprocessorcommunicationis requiredwhenrangeceil

decompositionis usedto parallelize problem.

In addition to sequential and parallel processing,a third possibility is vector

processingwhich canbe considered a hybrid of the sequential and parallel schemes.

These machines are optimized to operate on whole vectors of data at one time. By

employing vector registers, fully pipelined vector functional units, and fully pipelined

vector loads and stores, they are able to reduce the number of instruction and memory

fetches, eliminate memory latency with register to register operations, as well as

achieve arithmetic speedup. In the past, vector processors were mostly limited to

use in super computers such as the Cray Y-MP, but more recently they have become

available for more general purposes [21].

1.4 Problem Statement

In order to avoid a potential windshear hazard, it has been estimated that a

pilot is going to need an advanced warning time of 15 to 40 seconds [12]. A pulse

Doppler radar offers the potential for a look ahead capability over this time period,

but to get the relevant information to the pilot in a timely manner, the required signal

processing much be accomplished in real time. In the past, radar signal processing

has been performed on special purpose computing devices that offer extremely high

performance at the expense of flexibility. The emergence of concurrent processing

techniques and hardware has opened the possibility of achieving real time data rates

on an array of parallel computers that are easily reprogrammable and reconfigurable.

The advantage gained will be to shift the primary development effort from hardware

to software, greatly enhancing the adaptability of the system to future changes.

Investigation of parallel processing techniques has largely been carried out on

a PC based parallel computer called the transputer. Chapter 2 will introduce the

17

processorrequirementsthat havebeenspecifiedfor a microburst detectorand consider

how they translate into requirementsfor a multicomputer. Chapter 3 will discuss

ways of analyzing the performanceof multicomputers, and Chapter 4 will describe

the transputer systemand the Occammodelof concurrentprocessing.Chapter 5 will

describea transputer basedimplementation of a concurrent radar signal processor

including algorithms, hardware, and benchmarks. Finally, Chapter 6 will bring all

these issues into focus, presenting conclusions drawn from this research and making

recommendations for future work.

J
i
i

i

|

1

18

CHAPTER 2

COMPUTATIONAL REQUIREMENTS

The computational requirements for a real time microburst detector are deter-

mined by certain hardware parameters of the windshear radar, the computational load

of the desired algorithms, and the amount of processor margin factored into the calcu-

lation. Estimates of these requirements put forth by E. G. Baxa and M. A. Richards

are collected and summarized in a report by the Radar Signal/Data Processor (RSDP)

Task Force [22]. Processor requirements for several sets of algorithms of varying com-

plexity, referred to as algorithm suites, are given in terms of the following well known

performance measures for uniprocessor computers:

1. million instructions per second (MIPS),

2. million floating point operations per second (MFLOPS) [23],

3. thousand bytes of memory storage (KByte).

These values are intended to provide a guideline for the kinds of hardware choices that

are available. It should be noted that neither MIPS nor MFLOPS are in themselves

sufficient measures for comparative computer performance. Differences in machine

instruction sets and user programs make it impossible to construct a single perfor-

mance metric that is meaningful for all types of computers and application programs.

The only meaningful measure of computer performance is the execution time for the

specific application program of interest to the user [21]. Since it is not reasonable

to measure the execution time of the application on all possible types of computers,

and the nature of the application may not be completely defined beforehand, these

performance numbers serve to reduce the field of candidate systems. To illustrate

how values for these parameters are obtained, an analysis following that given in the

RSDP report is recreated below and extended to the case of concurrent processing.

2.1 Radar Parameters

An X-band airborne Doppler weatherradar currently operatedby the Antenna

and MicrowaveResearchBranch (AMRB) of NASA Langley ResearchCenterto flight

test the windsheardectection system is the sourceof hardware parametersused to

calculate the processingrequirements[24]. Many of the radar's characteristics are

adjustable allowing it to operateat severalPRFs, pulse widths, scan rates, et cetera.

The flexibility of the AMRB test radar makes it a reasonable choice for a benchmark

system since a production windshear radar is likely to operate within its worst case

configuration. Appendix A lists the relevant radar parameters and their possible

settings, but the most challenging configuration for a real time processor would be as

follows:

1. PRF = 9581 pulses per second,

2. number of range cells (NR) = 69,

3. scan rate (0)= 37.5 ° per second,

4. scan width (Os) = 60 °,

5. azimuth lines per scan width sector (N0) = 40.

Note that these values do not represent the worst case for each parameter indepen-

dently, rather they constitute a collective worst case configuration.

With the radar parameters specified, the maximum allowed processing time can

now be calculated. Consider the case where an averaged and sampled value from

each range bin is collected over a certain number of IPPs to form a range cell record

and all of these range cell records are block processed in real time. Then the time

available in which to perform the necessary processing, tp, is determined by the PRF

and the number of complex data points, N_, in each range cell data record.

2o

gl

tp - P RF "

The value of tp reflects the amount of time to process the returns from one pulse

of the radar, so on a uniprocessor that time must be divided among all the range cells

leaving tn as the time to process each range cell where tn is given by

tp
tR _ _.

Nn

If all the range cells can be processed concurrently, then nearly the full t v could be

dedicated to processing each range cell record. Given the worst case radar parameters

and a NI of 128 pulses, tp would be 13.36 msec and tn would be 0.19 msec.

The time available for processing can be increased somewhat by taking advantage

of the entire scan time between azimuth lines. Typically the returns from ,¥I pulses

are processed per line of azimuth and any additional time required for the antenna

to scan to the next azimuth line can be considered free for processing. Thus the full

tp is determined by

_S

The degree to which tp is increased depends on the PRF. For large values of the PRF

the improvement can be significant. Applying the worst case radar parameters to the

revised expression for tp gives 40 msec (or 0.58 msec per range cell on a uniprocessor).

That amounts to nearly a three fold increase over the time calculated by the previous

method.

2.2 Algorithms

Once the available processing time has been identified, then the algorithmic

complexity is assessed to determine the number and type of operations that must

occur within that time and to determine the amount of memory storage necessary

to hold the program and data. To facilitate analysis, four suites of algorithms are

21

presented, ranging from a minimal baseline system to a growth system. The following

is a list of algorithms presently being considered for the microburst detector:

1. time domain clutter rejection filtering,

2. spectral domain clutter rejection filtering,

3. Fourier spectral estimate,

4. inverse Fourier transform,

5. autoregressive spectral estimate,

6. time domain mean and width estimate (pulse-pair),

7. Fourier domain mean and width estimate (pulse-pair),

8. hazard factor computation.

The four algorithm suites are shown in flow diagram form in Figures 2.1 - 2.4.

Suite I consists of a 2 "d order IIR Moving Target Indicator (MTi) -clutter rejection

filter followed by a pulse-pair processor and hazard factor computation. This suite is

considered to offer the baseline level of acceptable performance. In suites II and III

the 2 "a order IIR filter is replaced by a 39 th order FIR filter followed by a spectral

i

i

i
W

m

estimate, some additional clutter filtering in the spectral domain, and finally spectral

domain mean and width estimates. In suite II the spectral estimation is done by a

Fast Fourier Transform (FFT) while in suite III it is done by autoregressive modeling.

The growth system, suite IV, includes all of the algorithms listed in the first three

suites. Obviously some of these algorithms are redundant, but this suite is designed

to anticipate future changes in the system.

For each of the algorithm suites, an estimate of the number of instructions,

number of floating point operations (FLOPs), and required memory locations is made.

Dividing the number of instructions and the number of floating point operations by

22

I&Q Data

Time Domain Clutter Filter

--2 pt. IIR--

Time Domain Mean and Width

Estimates

--Pulse-pair--

Hazard Detection

To Display

Figure 2.1 Algorithm Suite I Flow Diagram.

23

I&Q Data

I

Time Domain Clutter Filter I

I--39 pt. FIR--

Fourier Spectral Estimate I

Time & Freq. Domain Windowing I

pectral Domain Clutter Filter

--Line Editing--

pectral Domain Mean and Width

Estimates

--Pulse-pair--

Hazard Detection

To Display

i
I
!
|

!
=

i
=-

m

i
i

m
=

i

i
|
=
m

m

Figure 2.2 Algorithm Suite II Flow Diagram.

24

I&Q Data

Time Domain Clutter Filter

--39 pt. FIR--

Non-Fourier Spectral Estimate

-- AR Modeling--

-- Prony--

pectral Domain Clutter Filter

--Line Editing--

pectral Domain Mean and Width

Estimates

--Pulse-pair--

Hazard Detection

To Display

Figure 2.3 Algorithm Suite III Flow Diagram.

25

Non-Fourier Spectral Estimate

--AR Modeling--

--Prony--

I&Q Data

1,
Time Domain Clutter Filter

--39 pt. FIR--

I

Fourier Spectral Estimate

Time & Freq. Domain Windowin_

Spectral Domain Clutter Filter

--Line Editing--

Spectral Domain Mean and Width

Estimates

--Pulse-pair--

Inverse Fourier Transform

Time Domain Mean and Width

Estimates

--Pulse-Pair--

Hazard Detection

To Display

--=_
E

E

Figure 2.4 Algorithm Suite IV Flow Diagram.

26

Suite MFLOPS

I 13

II 68

III 121

IV 169

Total

MIPS

0.03

0.006

5.31

5.34

] Kbytes
285

566

566

711

Per Range Cell

MFLOPS

0.19

0.99

1.75

2.45

MIPS

0.0004

0.0001

76.96

77.39

Kbytes

4.13

8.20

8.20

10.30

Figure 2.5 Performance Parameters.

the available processing time gives the desired performance parameters MIPS and

FLOPS respectively.

Finally, a processor margin of 100% is factored into the analysis. Processor

margin is an attempt to account for inaccuracies of MFLOPS and MIPS as measures

of computer performance and allow for future growth of the system. For a parallel

processor, the processor margin can also be used to account for overheads associated

with concurrency, for example communication overhead. Figure 2.5 summarizes the

resulting computational requirements for a uniprocessor and for a multicomputer in

terms of performance per range cell.

27

CHAPTER 3

CONCURRENT PERFORMANCE

The previous chapter introduced some performance metrics that are commonly

used to evaluate single processor computers; MFLOPS, MIPS, and KBytes. These

same parameters, along with the interprocessor communication bandwidth (measured

in Mbytes/sec), are used to characterize the hardware of a multicomputer. Additional

measures are useful to quantify application specific issues such as how the problem

scales with the number of processors applied to it, what communication and syn-

chronization overheads are associated with it, and what fraction of the problem is

inherently sequential. While total execution time is still the ultimate criterion for the

performance of multiple processor computers, measures such as speedup, emciency,

and communication overhead add valuable insight into the behavior of concurrent

machines and may point to ways of improving their performance.

3.1 Communication Overhead

Time spent on interprocessor communication on a parallel computer, in the sim-

plest view, can be interpreted as a drawback to the multiprocessor approach in com-

parison with the uniprocessor alternative. It has been argued that this is an unfair

evaluation since interprocessor communication times should in fact be compared to

the time to access tiered or virtual memory on a sequential computer [20]. The fol-

lowing discussion will ignore this point and concentrate on ways of estimating the

overhead due to communication.

Following the notation suggested by Fox [20], the fractional communication over-

head of an application is defined as

Tcom trt

re-
Tea/c '

|

i

ffi

=

D

I
i

where Tco,_m is the total time spent on communication and Tc_t¢ is the total time spent

on calculations. T_omm and Tc_tc can be written in terms of hardware parameters

= the average time to communicate a word between two nodes.

= the average time the perform a calculation.

Both of these parameters are loosely defined because the best strategy for measuring

their values often depends on the specific application. For example, the average

length of a message can have a significant effect on tco,_,_ due to the startup latencies

associated with each communication. In scientific applications tc_lc is often assumed

to be the time for a floating point operation, but the various types of floating point

operations can involve a wide range of execution times. The relative occurrence of

each type of floating point operation in the code may need to be taken into account to

arrive at an accurate estimate of Galc. These issues, among others, would have to be

considered in designing a scheme for accurately measuring Gomm and tcalc, but often a

rough estimate is sufficient for analysis purposes. A simple method for estimating the

ratio of tcomm to tc_lc is to use the ratio of a multicomputer's floating point performance

to its communication bandwidth as follows:

t_omm MFLOPS

3ec

The importance of fc is that for good performance, it should have a relatively small

value, usually on the order of unity, and it should not increase dramatically as more

processors are applied to the problem. If fc is strongly dependent on the number of

processors, that may indicate that the problem is not very scalable.

As an illustration of how fc might be calculated, consider a hypothetical multi-

computer intended to provide signal processing for a pulse Doppler radar windshear

detector. For simplicity, it will comply with the following assumptions.

1. The computational requirements from Chapter 2 are satisfied.

29

2. The number of nodes is equal to the number of range cells, NR.

3. A single communication is required to distribute each range cell.

4. The radar is in the worst case configuration.

5. h_ equals 128 samples (arbitrary).

6. The algorithm suite corresponds to the growth system.

Given the above conditions, Tco,,,m and Tcat_ could be estimated by:

Tcate _ NFLOpstcat¢,

where 2_rFLOPS iS the total number of floating poing operations determined in the com-

putational requirements. By plugging in the values for the worst case configuration,

the communication overhead is approximated by

_oor/,.r?l

fc "-" c t_otc '

where

2N, Na
c - = 0.0026.

NFLOPS

The small value for c is due to the computational overkill of the growth suite of algo-

rithms and, to a certain extent, an underestimation of the amount of communication

resulting from assumption 3. Such a small value of c may indicate that distribut-

ing each range cell computation onto more than one processesor may yield better

performance for that particular algorithm suite.

30

3.2 SpeedupMeasuresand Efficiency

Perhapsthe most important measureof performance for parallel computers is

speedup,S(N), which is the ratio of the execution time on a single processor to the

execution time on a parallel computer with N processors.

S(N)= T,
TN

Dividing the speedup by N gives the efficiency which is often interpreted as the

speedup per node.

E(N)- S(N)
N

where,

0 < E(N) <__1.

The efficiency can be reduced from its ideal value of unity by a number of factors.

The concurrent algorithm may not be as good as its sequential counterpart, or even

where the same algorithm is used, the concurrent implementation may require addi-

tional instructions to control the distribution of the problem over multiple processors.

Load balancing can also be an important issue since the problem can only run as fast

as the slowest node, and of course the communication overhead that was discussed in

the previous section has an effect on the efficiency. Of all these factors, the commu-

nication overhead is the most significant for the radar signal processing application.

The algorithms being used require little modification to accomodate concurrency, and

load balancing is assured as long as an equal number of range cells are processed on

each node.

Bounds on both the speedup and efficiency have been established in previous

work by Amdahl [25] and Eager et al [96]. Since the efficiency follows directly fl-om

the speedup, only bounds on speedup will be considered here.

Every algorithm can be divided into portions that are independent and can thus

be performed in parallel and portions that are inherently sequential. The speedup of

31

analgorithm is limited by the extent to which its codeis sequential. Morespecifically,

if f is the fraction of the code that is sequential, then Amdahl's law [25] states that

speedup is bounded by:
1

s(x) _<

For example, if 20% of an algorithm is inherently sequential, then no matter how

many processors are applied to the problem, the maximum achievable speedup is 5.

It has been argued that Amdahl's law leads to an overly pessimistic evaluation of

large scale parallel computing. One argument is that many algorithms can be written

to reduce the number of sequential operations to an acceptably low level if they are

designed for concurrency fl'om the start rather than modified from existing sequential

code [20]. It has also been suggested that instead of running a fixed sized problem

on different numbers of processors, a more realistic approach is to fix the execution

time and solve the largest size problem possible [27].

A technique for bounding speedup similar in spirit to that of Amdahl is the use

of the average parallelism measure proposed by Eager, Zahorjan and Lazowska [26].

The average parallelism of an algorithm, A, can be defined in a number of ways, but

here it will be defined as the average number of processors that would be active during

the execution of an algorithm if an unlimited number of processors were available.

The upper and lower bounds on the speedup in terms of the average parallelism and

the number of processors are given by

NA
< S(N) < min(N,A).

N+A-1 - -

For range cell processing, the average parallelism can be estimated by the number of

range cells, Nn. Assuming there is a node for each range cell the bounds on speedup

become

NR 2
< S;v < NR.

2NR - 1 - -

The theoretical limits on speedup will be compared to actual measured values in

Chapter 5.

32

CHAPTER 4

THE TRANSPUTER

A system for processing pulse Doppler radar signals has been implemented on a

transputer-based multicomputer. Transputers are a family of computers that com-

bine a microprocessor, memory, and four serial communication links all on a single

VLSI chip. Figure 4.1 shows a block diagram of the T-800 transputer architecture.

Transputers can be housed in an ordinary PC on full length add-in cards and the

transputer nodes on those cards can be arranged in a variety of network configura-

tions controllable in software. While compilers for the transputer include FORTRAN,

C, and PASCAL, they are most easily programmed in OCCAM, a language designed

for concurrent processing that is tightly coupled to the architecture of the transputer.

In the sections below the transputer architecture will be discussed, OCCAM will be

introduced both as a language and as a model for concurrent processing, and finally

transputer and OCCAM support for real time processing will be covered.

4.1 Transputer Architecture

A distinguishing characteristic of the transputer is the cohesiveness and simplic-

ity of its design. This can be seen in the hardware support provided for the OCCAM

model of concurrent processing, in the freedom that the software developer is given

from considering strictly hardware issues, in the ease with which members of the trans-

puter processor line can be interchanged with only minor software changes, and in the

inherent self-sufficiency of the transputer chip. With very little external circuitry a

transputer chip can be made into a fully functional multicomputer node. Networks of

transputer nodes communicate by passing messages over their serial links. Since each

node is equipped with four links, transputer networks can assume topologies with

degree less than or equal to four. Some examples of possible transputer networks are

shown in Figure 4.2 [28].

r

System

Services

Timers

4K bytes

on-chip
SRAM

External

Memory
Interface

32-bits_ External
Memory Bus

64-bit FPU

32-bits_

32-bit

CPU

I
_ Link Interface_

Link Interface_

Link Interface_

32_ itsLink Interface

Event

Figure 4.1 Transputer architecture.

i

=

i

.=_

z

!
|

i

=

i

|

m

t-

!

34

(a) Pipeline

(b) Tree

<

(

(>-O-<D
(c) 2-D Mesh

>

(d) 3-D Hypercube

>

Figure 4.2 Examples of transputer networks.

35

4.1.1 Microprocessor and Memory

The transputer microprocessors come in 16 and 32 bit varieties and are essen-

tially reduced instruction set computers (RISC) except for certain instructions that

support scheduling and message passing [29]. An individual transputer is a sequential

processor operating on a single instruction stream. A powerful feature of the trans-

puter is its hardware process scheduler that performs high speed multitasking. Task

switching times are typically about 1 microsecond for OCCAM processes [30]. The

ability to multitask allows individual transputers to simulate concurrency. A pro-

gram made up of multiple processes can be run on a single transputer or a network

of transputers with only slight software modifications. This means that applications

can be developed and tested on a single transputer and then mapped on to a network

without changing the program logic.

There are two levels of memory hierarchy on a transputer node. The fastest is

the on-chip static RAM (SRAM), normally used by compilers as a register stack for

storing often used addresses and variables but also addressable by programmers who

wish to optimize performance. The access time for on-chip memory is one cycle which

on a 30 MHz T800 equals 33 nanoseconds. External dynamic RAM (DRAM) requires

more cycles to access, but up to 4 Gbytes can be addressed. An on-chip external

memory interface drives the external DRAM without any additional circuitry. The

difference between using internal or external memory is generally transparent to the

user except for the speed.

Figure 4.3 summarizes the characteristics of the more well known members of

the transputer family. The TS00 has an on-chip 64-bit IEEE floating-point processor

(FPU) [23]. The TS00 FPU provides much greater floating point performance than

that of T212 or T414 which use a run-time subroutine package to do floating point

operations. The latest generation of transputer is the Tg000 which is not yet com-

mercially avialable, but boasts an order of magnitude increase in performance over

the TS00.

|

36

T212 T414 T800

Clock speed (MHz) 20 20 17.5 20 30

Bus width (bits) 16 32 32 32 32

On chip SRAM (Kbytes) 2 2 4 4 4

MIPS 10 10 8.75 10 15

MFLOPS * 0.1 1.31 1.5 2.25

Figure 4.3 Transputer family statistics.

T9000

5O

32

16

2O0

25

Based on the computational requirements from Chapter 2 and the transputer

performance specifications and assuming linear speedup, a network of roughly 6 TS00

transputers would be required to implement the baseline suite, 30 T800s for suite II,

54 TS00s for suite III, and 76 TS00s for the growth suite. If the T9000 was used, the

required number of processors would be reduced to roughly 1 for the baseline suite,

3 for suite II, 5 for suite III, and 7 for the growth suite.

4.1.2 Links

The four communication links provide the sole means of interprocessor communi-

cation in transputer networks. Within a network, processors run asynchronously until

a communication needs to take place between two of the nodes. At this point the two

processors are synchronised by the links' hand-shaking hardware, the communication

takes place, and the processors proceed to run asynchronously.

When a communication takes place, data is transferred directly from the memory

space of one processor to the memory of the other via the link's DMA controller. The

T212, T414, and TS00 links can all operate at 0.625, 1.25, or 2.5 Mbytes/sec and the

T9000 links will be able to operate at 12.5 Mbytes/sec. Even though the T9000 has

much better maximum performance than previous models, all the transputer models

are link compatable so that mixed networks can be built.

A high degree of concurrency is built into the transputers link architecture. Each

link is bi-directionM, or full duplex, meaning that communication can take place in

37

both directions simultaneously. In addition, all foul" links can be active simultane-

ously, while at the same time the processor can be executing instructions. If the chip

has a floating point unit, as does the TS00, then that too can operate concurrently.

4.2 Occam Model of Concurrent Processing

OCCAM takes its name from the 14 th century English philosopher William of

Occam and his famed "Occam's razor": Entia non sunt multiplicanda praeter neces-

sitatem. Loosely translated this means don't add complication beyond necessity and

is the underlying philosophy of OCCAM, to keep it simple. Concurrency and com-

munication are built into the language according to the Communicating Sequential

Processes (CSP) model of concurrency proposed by C. AI R. Hoare of Oxford Univer-

sity [31]. The CSP model of concurrency is based on the concept of building parallel

applications from networks of sequential processors communicating through synchro-

nized point-to-point channels. Key elements of CSP that have been subsequently

adopted by OCCAM are include the following:

1. a guarded command to allow for non-determinism,

2. a parallel command to specify concurrent execution,

3. input and output primitives for communication between parallel processes,

4. point-to-point one way channels,

5. strong typing of variables and channels to assure secure communications.

In OCCAM the basic programming entities are processes which begin, perform

some action, and eventually terminate [30]. Processes executing in parallel and com-

municating through channels form the basis of the OCCAM model of concurrency.

38

J

=

!
B

i_

4.2.1 Primitive Processes and Channels

All processes are ultimately made up of three primative processes: assignment,

input, and output. The purpose of an assignment command is to change the value of

a variable. This can occur by changing it to a specified constant or to the value of an

expression. An example of assignment is

x:=y+7

where the value of x is changed to the result of the expression y + 7.

Input and output are built into OCCAM at the most basic level. They send and

receive messages on channels that connect parallel processes. Channels are the only

way that two processes running in parallel can share information because sharing

of global variables would lead to unpredictable behavior. Since parallel processes

execute asynchronously, a process needing to access such a variable would have no

way of knowing when that variable was last updated and whether or not it contained

the desired information. To simplify the situation, OCCAM allows only point-to-point

one way communication between processes. Before they can be used, channels must

be declared as a certain type, i.e. INT for integer, and given a name. This may seem

restrictive, but protocol definitions can be substituted for the type allowing a virtually

unlimited number of combinations, and the benefit is highly secure communications.

If channel1 and channel2 connect two processes in parallel, then

channel1 ? x

would read the value from channell into the variable x in the current process, and

channel2 ! y + 5

would send the value of y ÷ 5 down channel2 to the other process where a correspond-

ing input command would read it into a variable local to that process. The symbols

? and ! are the commands for inputting and outputting on a channel respectively.

39

4.2.2 Constructions

Compoundprocessesare built by combiningprimitive processeswithin construc-

tions. Variousconstructionssupportedby OCCAM are illustrated by examplebelow.

In a languagedesignedfor concurrency,sequentialoperation cannot beassumedasit

is in sequentiallanguages.In OCCAM sequentialoperation must beexplicitly stated

with the SEQ command.

SEQ
proci

proc2

proc3

The processes, procl, proc2, and proc3, are then executed one after the other in the

order listed. Termination of SEQ process occurs when the last process, in this case

proc3, terminates. The scope of a construction is marked by an indentation of two

spaces. In OCCAM, indentation is used for grouping commands in the same way that

BEGIN... END and {... } are used in PASCAL and C respectively. The command

to stipulate parallel execution is PAR.

PAR

procl

proc2

proc3

This time procl, proc2, and proc3 will be executed concurrently with no regard for

the order in which they are listed. Termination of a PAR process occurs when the

slowest process within its scope terminates.

For cases where a process may need to input from one of several channels and

perform a task based on which of the channels is communicating, OCCAM provides

a command for alternation.

i
__z

!
!

|

I

=
i

=

ip

|

m

it

|

4O

ALT
chanl ? x

procl
chan2? x

proc2
chan3? x

proc3

In the example, one of the three processesis executeddepending on which of the

channelsfirst becomesreadyto communicate.The input statement in an alternation,

called a 'guard', can consist of an input processand Booleanexpressionsto further

definewhich of two simultaneouslyready channelswill be accepted.

SEQ,PAR, and ALT statementscanbe "replicated" to form arraysof processes.

The simplest example is a replicated SEQ which is roughly equivalent to a FOR

statement in most conventionallanguages.

SEQ i = 0 FOR n

procl

proc2

proc3

The remaining flow control constructs are similar to those found in conventional

languages. IF and CASE statements provide conditional branching and a WHILE

statement provides conditional looping. For examples of OCCAM code, see Appendix

B.

4.3 Real Time Issues

From their beginnings, transputers were targeted for embedded systems applica-

tions. As a result, they have many features that make them attractive as real time

processors. Most of the essential functions for simulated and true concurrency, such

as multitasking and message passing are strongly supported in hardware for max-

imum efficiency. The process scheduler also supports two priority levels (high and

41

low) for processes. The level of the priority can be specified in the OCCAM code.

A high priority process will run to the exclusion of all other processes until it can

no longer proceed o1" terminates. Low priority processes can be interrupted by high

priority processes and are serviced in a round robin fashion. A system of priorities

allows short but time-critical processes to be executed without interruption which is

often a requirement in real time systems.

A hardware timer gives programs access to a 1 microsecond clock for high priority

processes and a 64 microsecond clock for low priority processes. Considering the time

dependent nature of real time programming, hardware timing support is a significant

asset. It facilitates the scheduling of time critical events and clocking of benchmarks.

In OCCAM, timers are accessed through a special variable type called a timer.

In a real time system, there is often a need to communicate with external devices.

Interfacing of peripherals can be handled by one of four methods.

1. The external memory bus.

2. Dual-ported memory.

3. An interrupt.

4. Links.

The first two options are not in keeping with the transputers design philosophy,

but they are possible for special purposes. One interrupt pin, or event pin, is pro-

=

!

|
x

i

i
|

!

=

!

it
w.

i

-=

_-y-

=_

=z

_-___-

|
!

vided on T800 and earlier transputers that can be used to trigger interrupt service

routines. Turnaround times for servicing interrupts are under 1 microsecond. The

favored metliod of handling any form of communications on the transputer, however,

is through the links which can also be interfaced with parallel ports by the use of

external link adapters.

One of the stated advantages of OCCAM is that it allows code to be developed

independent of the hardware on which it will eventually run. At some point, however,

42

processes must be loaded and run on physical transputer nodes, and channels must be

placed on their corresponding links. Resource allocation in OCCAM is handled by the

commands PLACE and PLACED which are used to assign channels and processes

to their respective physical devices. In addition, OCCAM allows insertion of low

level T-code into 0CCAM programs. Fortunately, the close relationship between

OCCAM and the transputer hardware usually eliminates the need to resort to low

level programming.

43

CHAPTER 5

CONCURRENT PROCESSING IMPLEMENTATION

5.1 Algorithms

Some of the algorithms listed in the suites from section 2.2 have been translated

into OCCAM for implementation on the transputers. In certain cases special tech-

niques have been used to speed up the algorithms taking advantage of the nature

i

of the problem, the transputer, or OCCAM. In the following sections, these algo-

rithms will be described along with any details of their implementation. Appendix B

provides OCCAM listings of all the algorithms described below.

5.1.1 Pulse-Pair Estimator

The pulse-pair algorithm has been introduced previously as an estimator of the

windspeed mean and variance. The technique is based on estimating the complex

autocovariance of the I&Q return from the pulse Doppler radar. If successive pairs

of pulses are statistically independent, then it has been shown [32] that a maximum

likelihood estimator of the complex autocovariance, Rzz(Ts), is given by

1 M-l

Rzz(Ts) = --_ _ Z'(iT,)Z([i + 1]T,),
i=O

where M is the number of pulses, T, is the sampling time between pulses (IPP), and

Z(iT,) is the complex I&Q sample at time iTs. An estimate of the mean windspeed

is then given by

arg[Rzz(T_)],
4

m
I

and the width estimate by

wPP- (27rT_)_ 1

These equations describe a method for obtaining mean and width estimates of the

windspeed given a complex series of pulse returns in the time domain. An equivalent

estimate can be obtained from the spectrum by noting that

/_I-I
9_'kT.

k=O

denotes the power spectral density. Then taking the argument ofwhere Sz(k)

Rzz(T,) gives

{ Z_'t=o ' Sz(k)sin(_) }arg/{zz(T,) = arctan /-.,k=0X"'M-1SZ(]e)COS(_)_ '

and estimates of 13ppand tbvv can be found as before [33].

Both implementations of the pulse-pair estimator have the advantage of being

more computationa/ly efficient than methods based on the FFT. It has also been

shown that the pulse-pair estimate has a smaller variance than the FFT estimator

for low signal to noise levels [19, 17]. The OCCAM implementation of the pulse-pair

estimator is straightforward.

5.1.2 Fast Fourier Transform

A class of algorithms known as FFTs provide a way of calculating the discrete

Fourier transform, DFT, that is computationally efficient and works well for a wide

range of problems. The algorithm used here is a complex radix-2 decimation in

frequency implementation of the FFT translated and modified from a FORTRAN

version taken from IEEE Programs for Digital Signal Processing [34].

In order to speed up the calculation, various modifications have been made to the

basic FFT algorithm. First it was noticed that a large percentage of the computation

time (roughly 38%) was spent on calculating the sine and cosine values for the twiddle

factors. For fixed data record lengths, a fixed set of these twiddle factors are needed,

so they are computed beforehand and stored in memory for later use by the FFT.

Techniques for performing the bit reversal are another area of interest for speeding

45

up the FFT [35,36]. The implementation of the FFT in OCCAM benefited from an

efficient bit reversal function built into the compiler libraries, and no other steps were

taken to improve the bit reversal algorithm.

A method for improving the efficiency of the FFT algorithm when there are a

large number of zero-valued samples in relation to actual data, is FFT pruning [37].

This technique elimates unnecessary computations that involve zeros by "pruning"

off those branches of the computation. The necessary modifications to the algorithm

are trivial. It has been shown that the time saved by pruning, tr, is approximately

tr = [L+ 2(1-
M

where 2 L data points are padded with 2 M-L zeros to form 2M-point FFT [37]. Pruning

was left in place even in cases where no zero padding was used since the computational

overhead for pruning was found to be extremely small.

The FFT has two primary disadvantages inherent in its approach. The first

disadvantage is that frequency resolution is limited by the inverse of the length of

the data record. This limits the ability of the FFT to resolve twQ or more signals

closely spaced in frequency. The second disadvantage involves the use of finite length

sequences to represent signals of infinite extent. By assuming the sequence to be zero

valued outside a finite number of samples, an implied windowing is imposed on the

data. It is equivalent to multiplying the data by a rectangular window with unity

amplitude. In the spectral domain, that is corresponds to convolving the spectrum

with a sinc function. This effect is known as spectral leakage because energy at

frequencies not represented in the basis set "leak" into fi'equencies over the full range

I

|

_-__-
|

|

|

E
|
B

of the basis [38, 37]. These limitations of the FFT are especially problematic for short

sequences of data which may be the case in a pulse Doppler radar application.

5.1.3 Autoregressive Modeling

An alternative to the FFT for estimating the spectrum is autoregressive (AR)

spectral estimation. This technique has been applied previously to radar applications

46

[39, 40, 41, 42, 43, 44, 45]. The general approach is to fit an AR model to the

sampled time series, and from the coeffcients of the model generate the spectrum.

The 'goodness' of the spectral estimate often depends on how appropriate an AR

model is for the underlying process [46, 47].

An AR model is an all pole model of the form

1
:i(f)=

1 + E_=l akexp(-3-Trf kT)

where ak axe the model coefficients, p is the model order, and T is the sampling

interval. Once the AR coefficients are determined, the power spectral density can be

found as

PaR(f) = I1 + E_=I akexp(-j27rfkT)J 2'

2 is the white noise power. Thus, the parameters that need to be estimatedwhere ap

are the ak's and cry. Many methods for computing these parameters have been devel-

oped, some that rely on estimates of the autocorrelation function and others that are

based on a least squares linear prediction approach [48]. The algorithm chosen for

this application is of the latter class. It is a block data, as opposed to recursive, mod-

ified covariance algorithm that has been translated into OCCAM from a FORTRAN

program supplied with Maxple's book, Digital Spectral A nalysis with Applications [48].

Advantages of using the modified covariance method of spectral estimation are

an improved frequency resolution compared to the FFT, for low signal to noise ra-

tios, and an ability to estimate the spectrum at any frequency within the processing

bandwidth instead of at frequencies predetermined by the length of the data record.

Also the problem of spectral leakage is eliminated because the model does not force

the sequence to be zero valued outside the range of the data. Disadvantages are that

it is more computationally intensive than the FFT, requiring Np + 6p 2 operations as

opposed to Nlog2(N) for the FFT [48]. Also the AR model may not be well suited

to the problem, often resulting in high order values of p to adequately represent it.

47

Choosing an appropriate model order is not always a straight forward process. Sev-

eral algorithms have been proposed for this purpose [48, 49, 50, 51], but it has been

shown that none of these methods works well for short segments of actual data [52].

5.2 Hardware

The transputer network used to test the above algorithms and obtain bench-

marks for processing radar return concurrently is shown in Figure 5.1 as a block

diagram. It consists of 9 transputers, eight of which are T414s configured in a a-D

hypercube and the nineth, a TS00 root node, serving as a gateway to the PC. The

hypercube topology was chosen because it is flexible, in the sense that many other

topologies can be mapped on the hypercube, and because it is a popular network that

has received considerable attention in parallel processing literature [20]. The most

important attribute of a network for this application is that a minimal number of

interprocessor communications be necessary to distribute the range cell data. The

hypercube satisfies this requirement.

On the PC, Radar I&Q data is stored in a file which is read into the memory of

the root node by an interfacing program written in the C language. At this time the

user is asked to specify eight range cells to be displayed to the screen. All the data is

then distributed by range cell throughout the network by routing programs resident

in each node. A spectral estimate is performed in each node, and then the results are

recollected in the root node where Doppler spectrums for the eight specified range

cells are read directly into the PC memory by the C interfacing program. Finally, a

C program resident on the PC host is invoked to display the results on the screen.

Figure 5.2 shows a display of some simulated data.

E
I

Z

F

m

mE

Im
=

=

5.3 Benchmarks

Measurement of benchmarks was complicated by the use of two different trans-

puter processor models operating at different clock speeds. The transputer network

was made up of one TS00 running at 17.SMHz and eight T414s running at 20MHz.

48

I Host PC

T4

T800 Root

Figure 5.1 Block diagram of the transputer evaluation set-up.

49

Power Spectral Densitg

R_nge Cell # 17

oU_0I,,0 i'O2.03'0

Range Cell # 18

oio;oo IO:o3'o_- _ -_

Range Cell # IS

-10
20Ioo I'o2'o3o

Range Cell # 20

-10 , , , '
3020lOo 1'o2'o3'o

i_ange Cell # 21

10 , ,
30 _0 1130 I'020 30

Range Cell # 22

-70

ob ioo l?2030

Range Ceil # 23

-10_o20Loo l'o2b3'0

Ranqe Cell # 24

-io_o-io-_o; 1'o2'03b

Press a key..,

Figure 5.2 Range cell display.
_=

i
m

|

50

Pulses

512

256

128

64

32

Zeros

0

256

384

448

48O

T$00 @ 17.5MHz T800 _ 30MHz

Total points Time(msec) Time(msec)

512 78.67 45.89

512 78.67 45:89

512 74.43 43.42

512 68.82 40.15

512 63.02 36.76

Figure 5.3 FFT benchmarks with pruning.

The primary difference between the TS00 and the T414 is the TS00's FPU which

gives it much better floating point performance than the T414. For this reason,

benchmarks for individual algorithms were performed on the T800 and the execution

times were scaled to show the expected performance on the fastest available trans-

puter, a TS00 running at 30MHz. Measuring speedup, however, required the use

of multiple transputers so those measurements were performed on networks of the

T414s.

5.3.1 Fast Fourier Transform

Two sets of benchmarks were compiled for the FFT. The first, shown in Figure

5.3, illustrates the effect of pruning. The number of actual data points was varied

from 512 down to 32 with zeros added as required to make a total of 512 points.

Notice that a large ratio of zeros to data points is necessary before significant time

savings are seen. For a 512 point FFT on a 30MHz T800, Figure 5.3 shows that

pruning 480 zeros only saved 9.13 msec, or 20% of the total execution time. In fact

for a one to one ratio of zeros to data points pruning gives no improvement. It is

evident that even with pruning, zero padding incurs a significant computational cost.

Figure 5.4 shows the FFT benchmarks with no zero padding. Recall that the

window of time available for processing all the range cells was found in section 2.1

to be 40 ms. Comparing this value with the execution times listed in the Figure 5.4,

51

T800 _ 17.5MHz T800 @ 30MHz

Pulses Time(msec) Time(msec)

512 78.67 45.89

256 36.79 21.46

128 16.71 9.75

64 7.74 4.52

32 3.56 2.08

Figure 5.4 FFT benchmarks with no zero padding.

notice that even on the 17.5MHz T800 for 128 or fewer samples the computation can

take place within the available processing window. On a 30MHz TS00 the number of

samples can be extended to 256. The assumptions here, of course, are that a single

processor is allocated to each range cell and that the overheads for using such a large

number of processors are ignored.

5.3.2 Autoregressive Model

The AR spectral estimate was run for model orders 3, 5, and 10. Order 3

was chosen as a baseline because it has enough poles to account for a clutter mode

and weather mode plus an extra pole to provide some additional detail. It would

not be unreasonable to use a 2 nd order model just to capture those two dominant

modes, and it should be noted a 1't order AR model is equivalent to the pulse pair

estimator [53]. Model order 5 was chosen as an intermediate level because it seems

to adequately represent the Doppler power spectrum of simulated microburst data

based on qualitative comparison with the FFT, and order 10 was chosen as a growth

case based on similar qualitative grounds and previous analysis of simulated clutter

[15]. Figure 5.5 shows the benchmarks for all three model orders for range cell records

of 32 to 512 pulses. On a 30MHz T-800 transputer, notice that the 3 rd and 5 th order

models can accommodate up to 256 pulses within the allowable processing window

and the 10 th order model can accommodate up to 128 pulses.

52

T800_ 17.5MHz T800 _ 30MHz
Model order Pulses Time(msec) Time(msec)

3 512 84.14 49.08
3 256 42.94 25.05
3 128 22.01 12.84
3 64 11.86 6.92

32
512
256
128
64
32

3.56
110.83
57.65
30.56
17.43
10.81

2.08
64.65
33.63
17.83
10.17
6.31

10 512 173.16 101.01
10 256 95.55 55.74
10 128 54.79 31.96
10 64 35.13 20.49
10 32 25.18 14.69

Figure 5.5 Autoregressivemodeling benchmarks.

53

Processors(N)
1
2
4
8

S(N) E(N)
1.000 1.000
1.988 0.994
3.877 0.969
7.552 0.944

Figure 5.6 Speedupand efficiencymeasurements.

5.3.3 Speedup

The speedupwas measuredon networks of 1, 2,4, and 8 processorsconnected

in hypercubesof dimension0, 1, 2, and 3 respectively. Figure'5.6 shows the speedup

and efficiency measured for all four networks. Notice that the speedup is nearly linear

for up to 8 processors with an efficiency at 8 processors of 0.944. If the speedup were

perfectly linear the efficiency would be a constant of 1. Figure 5.7 plots the speedup

measurements from Figure 5.6 versus the number of processesors. In the plot, the

solid line corresponds to linear speedup and the dashed line is the actual measured

speedupl This t_gure shows that for a low number of processors, the speedup is nearly

linear. Recall from section 3.2 that the bounds on speedup for this application were

found to be

NA
< S(N) < min(N,A).

N+A-1 - -

For a network of N = 8 processors and A = Nn = 40 range cells, this equation gives

a speedup bound of 6.81 _< S(N) <_ 8.00 which agrees with the measured value.

i
_

+

i

|

=_-
K
=

i

E

[
m

|
m

i

54

v

{n

Cu

CL
_o

i0

I I I I ! ! i I t_
7--

//0

/J t

f///

j/t j////f/if f/jr

i__i I I I I I I I

2 3 4 5 6 7 8 9 10

Number of Processors (N)

Figure 5.7 Plot of speedup.

55

CttAPTER 6

CONCLUSIONS

Regardless of the type of sensor eventually used to provide airborne microburst

detection, the signals generated will have to be processed in real time. In order to

assure reliable detection under all atmospheric conditions, it is likely that a combi-

nation of sensors and sophisticated signal processing techniques will be required. A

promising approach to achieving the high data rates necessary for real time processing

is to perform the signal processing concurrently on an array of multiprocessors. This

thesis has examined issues involved in implementing a concurrent real time microburst

detection system using a PC based parallel computer called the transputer.

The specific strategy investigated here is to distribute the processing of range

cells over a network of single instruction stream computers that pass messages on

high speed serial communication links. The processing within a range cell is entirely

sequential so that communication overheads are minimized. Also, existing algorithms

can be used with only slight modification. With regard to network topology, a hyper-

cube arrangement is adopted because it allows the minimum number of link commu-

nications to distribute the range cell data throughout the network. The hypercube

also has the benefit of having been well studied and documented in previous works

[20].

A number of algorithms are implemented to demonstrate that real time process-

ing is feasible. This effort focuses on the most computationally intensive step in the

signal processing, estimating the spectrum. Two methods are considered, the FFT

and AR modeling. The FFT is a well known method for estimating the spectrum that

is computationally efficient and robust. To improve the algorithms suitability for real

time processing, look-up tables are used to calculate the twiddle factors and pruning

!

!

J

|

q
|

F.
!

=

w

m

!

is used to eliminate needless computations due to zero padding of the data. Draw-

backs of the FFT are the limited frequency resolution and spectral leakage. Both of

these limitations are most severe for short sequences of data as may be the case for

range cell records based on the stationarity of the weather spectrum. Spectral esti-

mates based on AR modeling do not suffer from spectral leakage and the frequency

resolution is not as limited; however, AR modeling is much more computationally

intensive than the FFT. It is also not clear that the most appropriate model for the

weather plus clutter time series is autoregressive, or what the optimum model order

is. Analysis of simulated data has indicated that a 5th order AR model might ade-

quately represent the spectrum and it may be possible to go as low as 2 nd order to

capture just the two modes associated with the clutter and the weather [54].

Benchmarks of the FFT and AR modeling algorithms show that the returns from

a single range cell could be processed in real time on a single transputer. Unfortu-

nately that means that a network of transputers with a number of nodes equal to

the number of range cells would be required to process the complete return signal.

From measurement_ of the speedup, it is apparent that overheads associated with con-

currency and especially communication overhead will begin to significantly degrade

performance for large numbers of processors so that even allowing one processor for

each range cell would probobly not be sufficient for real time. This analysis is based

on technology that is currently available, but an inherent property of concurrent pro-

cessing is that a small improvement in the performance of the individual nodes can

lead to vast improvements in the overall system performance. In 1992 a new gen-

eration of transputer called the T9000 will be available that promises an order of

magnitude increase in performance over previous models. Using T9000 transputers,

a system such as the hypercube arrangement described in section 5.2 would meet real

time requirements.

The transputer evaluation system provides a parallel processing platform for

conducting a number of research efforts including development and benchmarking

57

i

algorithms and measurements of concurrent performance in anticipation of advances

in computer hardware. In addition, it can serve as a quick-look processor for identi-

fying interesting sections of data during post-processing of flight test data.

Future work in this area may include investigating the use of medium grain SIMD

computers to perform the necessary radar signal processing since a single instruction

stream could be used to perform identical computations on each range cell. Another

approach might be to distribute the range cell computation over multiple processors

for implementation on massively parallel networks. It may also be possible to integrate

some of the radar control functions such as automatic gain control (AGC) on the same

parallel processor that performs the other signal processing tasks. Finally, application

of sensor fusion and artificial intelligence principles to microburst detection may be

called for if a combination of sensor technologies is necessary to provide reliable

detection.

|

i

!
z

=._

58

APPENDICES

Appendix A

Radar Parameters

Parameter
Frequency

Pulsewidth
Power

Pulse Repetition Frequency

Antenna Gain
Two-way Antenna Beamwidth

Antenna ScanWidth

Antenna ScanCenter
Antenna Tilt Range
Azimuth ScanRate:

All PRFs except3755
At PRF of 3755

Antenna Polarization

Value
9.33625GHz
9.33772GHz

0.96 to 8.16#sec
200 or 2000Watts

1198,2395,3755,4791,
or 9581pulses/sec

34 dBi

2.5 °

O, -4-5°, 4-10 °, 4-15 °, 4-20 °,

-t-30 ° , +45 ° , or -t-60 °

+90 °, adjustable in .25 ° increments

-32 ° to +40 °

37.5, 18.75, 9.375, or 4.6875 °/sec

29.25, 14.625 °/sec

Horizontal or Vertical

Data Encoding 12-bit I&Q samples

Number of Range Cells 1 to 124

J

Figure A.1 Radar Parameters.

i

!
|

|

J
|

B

|
!
m

Appendix B

Occam Software Listing

B.1 Pulse-Pair

--{{{ pulse pair

#INCLUDE "ws. inc"

PROC PP(CHAN OF C from.pc, CHAN OF PPP to.pc)

#USE "cmplxlib"

#USE "snglmath.lib"

VAL N IS pulses:

VAL prf IS 3720.O(REAL32):

VAL prp IS 1.0(REAL32)/prf:

VAL pi IS 3.141592654(REAL32):

VAL tick.rate IS IO00000.O(REAL32) :

VAL amult IS 1.0(REAL32)/((((2.0(REAL32)*pi)*pi)*prp)*prp):

REAL32 argrts,amagnrts,sum,real.sum,aimag.sum,bmult,tr,ti,rO,time:

REAL32 eofmean,eofstd :

[N+I]REAL32 areal,aimag :

INT I,Zl,t2:

TIMER clock :

SEQ

real.sum:=O.O(KEAL32)

aimag.sum:=O.O(REAL32)

I:=l

from.pc ? [areal FROM 1 FOR N]; [alma E FROM 1 FOR N]

clock ? tl

WHILE I<N

SEQ

CMul(areal[I],-aimag[I],areal[I+l],aimag[I+l],tr,ti)

real.sum:=real.sum+tr

aimag.sum:=aimag.sum+_i

I:=I÷l

amagnr_s:=SQRT((real.sum*real.sum)+(aimag.sum*aimag.sum))/

(REALS2 ROUND(N-I))

argrts:= ATAN2(real.sum,aimag.sum)

sum:=O.O(REAL32)

SEQ I=I FOR N

sum:=sum+ ((areal[l],areal[l])+(aimag[l]*aimag[l]))

rO:=sum/(REAL32ROUND(N))
eofmean:=(SO.O2(REAL32)*argrts)Ipi
bmult:=ABS(1.0(REAL32)-(ABS(amagnrts)IrO))
eofstd:=((30.O2(REAL32)*SQRT(amult*bmult))*2.0(REAL32))Iprf
clock ? t2

time := (REAL32 ROUND (t2 MINUS tl))/tick.raze

to.pc ! time; eofmean; eofstd

B.2 Fast Fourier Transform

#INCLUDE "hostio.inc"

#INCLUDE "ws.inc"

--{{{ FUN PWR2

INT FUNCTION PWR2 (VAL INT i)

INT b :

VALOF

SEQ

b:=l

b:=ASHIFTLEFT(b,i)

RESULT b

PROC INDEX.TRIG(VAL INT J,I,REAL32 C,S,VAL [(pulses/2)+l]REAi32

cos.table, sin.table)

INT index:

SEQ

index:=(J-l)*PWR2(I-l)

C:=cos.table[index]

S:=sin.table[index]

--{{{ PROC FFT

PRDC FFT(CHAN OF C from.pc, CHAN OF AR to.pc)

#USE "snglmath. lib"

VAL twopi IS 6.283185307179586(REAL32) :

VAL tick.rate IS lO00000.O(REAL32) :

VAL INT N IS pulses:

VAL REAL32 NN IS (REAL32 ROUND N):

REAL32 time:

[(N/2)+I]REAL32 cos.table,sin.table :

[N÷l]REAL32 X,Y :

62

i

--{{{ Cooley-Tukey Radix-2

TIMER clock :

INT I,N2,tl,t2:

SEQ

SEQ i=O FOR ((N/2)+I)

REAL32 r :

SEQ

r:=(((REAL32 ROUND i)*zwopi)/NN)

cos.table[i] :=COS(r)

sin.table[i] :=SIN(r)

WHILE TRUE

SEQ

N2 :=N

I:=l

from.pc ? [X FROM I FOR N];[Y FROM i FOR N]

clock ? _I

WHILE I<=M

INT J,NI,LL:

SEQ

NI := N2

N2 := N2/2

LL := N2

IF

I < (M-LO)

LL := L2

I >= (M-LO)

SKIP

J:=l

WHILE J<=N2

REAL32 C,S:

INT K:

SEQ

INDEX.TRIG(J,l,C,S,cos.table,sin.table)

K:=J

WHILE K <= N

REAL32 XT,YT:

INT L:

SEQ

L:=K+N2

XT: =X [K] -X [L]

YT: =Y [K] -Y [L]

X [K] :=X [K] +X [L]

Y [El :=Y [K] +Y ILl

X [L] := (C*XT) + (S*YT)

Y[L]:=(C*YT)-(S*XT)

K:=K+NI

J:=J+l

63

I:=I+l

VALREAL32 c IS 60.O(REAL32)/NN :

[N]REAL32 ws,z,xtemp,ytemp :

INT p :

SEQ

[xtemp FROM 0 FOR N] := [X FROM I FOR N]

[ytemp FROM 0 FOR N] := [Y FROM 1 FOR N]

SEO i=O FOR N

SEQ

p:=BITREVNBITS(I,M)

z[I]:=10.O(REAL32)*ALOGlO((xtemp[p]*xtemp[p])+

(ytemp[p]*ytemp[p]))

ws[I]:=((REAL32 ROUND I) - (REAL32 ROUND (N/2)))*C

[xtemp FROM 0 FOR N/2] := [z FROM N/2 FOR N/2]

[xtemp FROM N/2 FOR N/2] := [z FROM 0 FOR N/2]

clock ? t2

%ime := (REAL32 ROUND (t2 MINUS tl))/tick.rate

to.pc ! time; ws; xtemp

B.3 Autoregressive Model

#INCLUDE "ws.inc"

--{{{ PROC FFT

PROC FFT(VAL [(pulses/2)+l]REAi32 cos.table, sin.table,

[pulses+1]REAL32 S,f, [ORD+2]REAL32 a.r,a.i,REAi32 sigma)

#USE "snglmath.lib"

VAL INT N IS pulses :

IN+l] REAL32 R, Q :

INT I,N2:

--<{{ Cooi:ey-Tukey Radix-2

SEQ

R[i] :=I. O(REAL32)

Q [I] :=0. O(REAL32)

SEQ G=2 FOR ORD

SEQ

RIG] :=a.r[G-l]

0 [G] :=a. i [G- i]

SEQ G= (ORD+2) FOR (N-(ORD+I))

sz_

R[G] :=0.0 (REAL32)

Q [G] :=0.0 (REAL32)

64

i

N2 :=N

I:=l

WHILE I<=M

INT J,NI,LL:

SEQ

N1 :--N2

N2 :--N2/2

LL := N2

IF

I < (M-iO)

LL := L2

I >- (M-LO)

SKIP

J:=1

WHILE J<=LL

REAL32 C,S :

INT K:

SEQ

INDEX. TRIG (J, I,C,S, cos. tabl e,sin. table)

K:"J

WHILE K <-- N

KEAL32 XT,YT:

X IS [R FROM 0 FOR (N+I)]:

Y IS [O FROM 0 FOR (N+I)]:

INT L :

SEQ

L :=K+N2

XT: -X [K] -X [L]

YT: =Y [K] -Y [L]

x [K]:=x[K]+X[L]
Y [El : =Y [K] +Y [L]

X[L] :=(C*XT) + (S*YT)

Y[L] :--(C*YT)- (S*XT)

K: =K+N 1

J:=J+l

I:=I+I

-- AR Spectral ex_imate

VAL REAL32 NN IS (KEAL32 ROUND N) :

IN]REAL32 temp :

INT p :

SEQ
SEQ 1=i FOR N

SEQ

S [I- 1] : =s iEma/((R [I] *R [I]) + (Q [I] *Q [I]))

SEQ I:O FOR N

SEQ

p :=BITKEVNBITS (I, M)

65

temp [I] :=I0.0 (REAL32) *ALOGIO (S [p])

f [I] :=(((REAL32 ROUND I) -(NN/2.0 (REAL32))),60.0 (REAL32))/NN

[S FROM 0 FOR N/2] := [temp FROM N/2 FOR N/2]

IS FROM N/2 FOR N/2] := [temp FROM 0 FOR N/2]

i

PROC MODCOVAR(CHAN OF C from.pc,CHAN OF AR to.pc)

#USE "snglmath. lib"

#USE "cmplxlib"

VAL N IS pulses :

VAL twopi IS 6.283185307179586(REAL32) :

VAL tick.rate IS IO00000.O(REAL32) :

VAL REAL32 NN IS (KEAL32 ROUND N) :

INT M,tl,t2 :

REAL32 rl,r2,r3,r4,P,delta,gamma,lambda.r,lambda.i,tmp.r,tmp.i :

[N+1]REAL32 x.r,x.i :

[ORD+2]REAL32 a.r,a.i,c.r,c.i,d.r,d.i :

[(N/2)+I]REAL32 cos.table,sin.table :

TIMER clock :

sEo
rl := O.O(REAL32)

M := 0

SEO I=0 FOR ((N/2)+I)

REAL32 r :

SEq

r:=(((REAL32 ROUND I)*twopi)/NN)

cos.table[I] := COS(r)

sin.table[I] := SIN(r)

SEQ i=i FOR (ORD+I)

SEO
a.r[l]

a.i[I]

from.pc ?

clock ? Zl

SEO I=2 FOR (N-2)

rl := rl+(2.0(REAL32)*CMag2(x.r[I] ,x.i[l]))

r2 := CMag2(x.r[l],x.i[l])

r3 := CMag2(x.r[N],x.i[N])

r4 := 1.0(REAL32)/(rI+(2.0(REAL32)*(r2+r3)))

P := rl+(r2+r3)

delta := I.O(REAL32)-(r2*r4)

gamma := I.O(REAL32)-(r3*r4)

CSul(x.r[l],x.i[1],x.r[N],x.i[N],tmp.r,tmp.i)

CSmul(tmp.r,-tmp.i,r4,1ambda.r,lambda.i)

:= O.O(REAL32)

:= O.O(REAL32)

[x.r FROM I FOR N];[x.i FROM I FOR N]

66

CSmul(x.r IN] ,x.i[N] ,r4,c.r[l],c.i[l])

CSmul (x.r [1] ,-x.i[l] ,r4,d.r [1] ,d.i[l])

-- Main Loop

WHILE M<ORD

REAL32 savel .r, savel, i ,theza.r, theta, i ,PSI. r,PSI, i ,dummy:

REAL32 XI.r,XI.i,EF.r,EF.i,EB.r,EB.i,r5,tmpl.r,_mpl.i :

P_EAL32 C1.r,Cl.i,C2.r,C2.i,C3.r,C3.i,C4.r,C4.i :

[ORD+I]REAL32 R.r,R.i :

INT J :

SEQ

M := M+I

savel.r :--O.O(P_EAL32)

savel.i := O.O(REAL32)

SEO I=(M+I) FOR (N-M)

SEQ

CMul (x .r[I] ,x. i[I] ,x .r[I-M], -x. i [I-MJ ,trap1.r,tmpl. i)

savel.r := savel.r+tmpl.r

savel.i :--savel.i+tmpl.i

savel.r := 2.O(REAL32)*savel.r

savel.i := 2.0(REAL32)*savel.i

R.r[M] := savel.r

R.i[M] :=-savel.i

CMul (x.r IN], x. i IN], d. r [I], d. i [13, theta, r,theta, i)

CMul(x.r[N] ,x.i[N] ,c.r[1] ,c.i[1] ,PSI.r ,PSI.i)

CMul(x.r[1] ,-x.i[1] ,d.r[1] ,d.i[1] ,XI.r,XI.i)

IF

M<>I

SEQ I=i FOR (M-l)

REAL32 tmp.r,tmp.i,tmpl.r,tmpl.i :

SEQ

CMul (x. r IN-I] ,x. i IN-I] ,d.r[I+l] ,d. i [I+l] ,trap.r,tmp, i)

theta.r := theta.r+tmp.r

theta.i := theta.i+tmp.i

CMul (x .r[N-I] ,x. i [N-I] ,c .r[I+l] ,c. i [I+1] ,zmp .r,tmp. i)

PSI.r := PSI.r+tmp.r

PSI.i := PSI.i+tmp.i

CMul(x.r [I+1] ,-x.i [I+l] ,d.r [I+l] ,d.i[I÷l] ,tmp.r,tmp. i)

XI.r := XI.r+tmp.r

XI.i := XI.i+tmp.i

CMul (x.r IN+ (l-M)] ,x. i [N+ (I-M)] ,x .rIN÷ ((I-M)÷I)],

-x. i [N+((I-M) ÷I)] ,trap.r ,trap.i)

CMul (x. r [M-I], x. i [M-I] ,x .r[M], -x. i [M] ,tmpl. r ,trapI.i)

R.r[I] := R.r[I]-(tmp.r÷tmpl.r)

R.i[I] := R.i[I]-(tmp.i÷tmpl.i)

CMul (R.r [I] ,-R. i[I], a.r [M-I] ,a. i [M-I] ,trap.r,trap.i)

savel.r := savel.r+tmp.r

67

savel.i := savel.i+tmp.i

M= 1

SKIP

-- Order update of coefficient (a) vector

CSmul (-save 1.r,-savel. i,I.0 (REAL32)/P, C I.r, Cl. i)

a.r[M] := Cl.r

a.i[M] := Cl.i

P := P*(I.O(REAL32)-CMag2(CI.r,Cl.i))

IF

M<> 1

INT MI :

SEq I=l FOR (M/2)

REAL32 imp. r, imp. i :

SEQ

MI := M-I

savel.r := a.r[I]

savel.i :-- a.i[I]

CMul (Ci .r,C1. i,a.r [MI],-a. i[MI] ,imp. r,trap.i)

CAdd (save I.r,savel, i,trap.r, imp. i, a.r[I], a. i [I])

IF

I <> MI

SEQ

CMul (C1. r, CI. i, savel, r, -save I.i,imp. r, imp. i)

a.r[Mi] :- a.r[MI]+tmp.r

a.i[MI] := a.i[MI]+tmp.i

I=MI

SKIP

M= 1

SKIP

IF

M = ORD

REAL32 time :

[N+I] KEAL32 S,f:

SEQ

P :--0.5(I%EALS2)*(P/(REAL32 ROUND (N-M)))

FFT (cos. table, sin. table, S ,f, a.r, a.i,P)

clock ? t2

time := (REAL32 RO_D (t2 MINUS tl))/tick.rate

to.pc ! time; [f FROM 0 FOR N];[S FROM 0 FOR N]

-- Time update of C,D vectors and gamma,delta,lambda scalars

M <> ORD

SEQ

rl := 1.0(KEAL32)/((delta*gamma)-

CMag2 (lambda. r, lambda, i))

68

CMul (_he_ a.r, thet a. i,lambda, r, -lambda. i,trap.r,trap.i)

CAdd (imp. r,imp. i, (delta*PSI. r), (delta*PSI. i),

tmpl.r,tmpl.i)

CSmui(tmpl.r,tmpl.i,rl,Cl.r,C1.i)

CMul(PSI. r,PSI, i,lambda, r, lambda, i,tmp. r,tmp, i)

CAdd (trap.r,trap.i, (gamma*_het a. r), (gamma*thet a.i),

tmpl.r,tmpl.i)

CSmul (trapI.r, trap1,i,rl ,C2 .r,C2. i)

CMul (XI .r,XI. i, lambda, r, -lambda. i ,imp. r, imp. i)

CAdd(tmp. r ,tmp. i, (del_a_the_a .r), (delta_theta. i),

tmpl. r, tmpl .i)

CSmul (trap1.r,trap1.i,rl, C3. r,C3. i)

CMul (thet a.r,theta, i,lambda, r, lambda, i,tmp. r, imp. i)

CAdd (tmp. r ,_mp. i, (gammasXI .r), (gammasXI. i),

trap1,r,tmp 1.i)

CSmul (imp i.r, tmpl. i ,rl ,C4. r, C4. i)

SEQ I=l FOR ((M-I)/3)

INT MI :

REAL32 save2, r, save2, i, save3, r, save3, i :

REAL32 save4 .r,save4. i ,trap.r ,trap.i ,tmpl. r,zmpl, i :

SEQ

MI := (M÷I)-I

savel.r :--c.r[I]

savel.i :---c.i[I]

save2.r :- d.r[I]

save2.i :- -d.i[I]

save3.r := c.r[MI]

save3.i := -c.i[MI]

save4.r := d.r[MI]

save4.i := -d.i[MI]

CMul (C1. r,Cl. i ,save3. r, save3, i,tmp .r,tmp. i)

CMul(C2. r,C2. i ,save4. r, save4, i,trapI.r,tmp 1.i)

c.r[I] := c.r[I]+(tmp.r+tmpl.r)

c.i[I] := c.i[I]+(tmp.i+tmpl.i)

CMul (C3. r, C3. i,save3. r,save3, i,imp. r,imp. i)

CMul (C4. r, C4. i,sav e4. r,sav e4. i,trapI.r,imp i. i)

d.r[I] := d.r[I]+(¢mp.r+tmpl.r)

d.i[I] := d.i[I]+(tmp.i+tmpl.i)

IF

I <> MI

SEQ

CMul (CI.r,C1. i, save i .r,savel, i ,imp .r,tmp. i)

CMul (C2. r,C2. i, save2, r, save2, i,tmpl. r ,Zmp I.i)

c.r[MI] := c.r[MI]+(tmp.r+tmpl.r)

c.i[MI] := c.i[MI]÷(tmp.i+rmpl.i)

CMul(C3.r,C3. i,savel .r, save1, i,tmp, r,tmp, i)

CMul(C4. r, C4. i,save2, r, save2, i ,tmpl. r,tmpl, i)

d.r[MI] := d.r[MI]+(tmp.r+tmpl.r)

69

d.i[MI] := d.i[MI]+(tmp.i+tmpl.i)

I _MI

SKIP

r2 := CMag2(PSI.r,PSI.i)

r3 := CMag2(theta.r,_heta.i)

r4 := CMag2(XI.r,XI.i)

CMul (PSI .r,PSI. i,lambda, r, lambda, i,tmp, r,tmp, i)

CMul (trap.r,trap.i,thet a.r, -the% a. i,trap1.r,trap1. i)

r5 := gamma - (rl,((r2*delta)+((r3_gamma)+(2.0(REAL32),

tmpl.r))))

CMul (thet a.r, theta, i,iambda, r, lambda, i,imp. r, trap.i)

CMul (tmp. r,tmp, i,XI. r,-XI, i,tmp1 .r,tmpl.i)

r2 := delta- (rl*((r3*delta)+((r4*gamma)+(2.0(REAL32)*

tmpl .r))))

gamma := r5

delta := r2

CMul (C3. r, C3. i,PSI. r, -PSI. i,imp. r,imp. i)

CMul (C4. r, C4. i,theta, r,-¢heta, i, tmpl. r,zmpl .i)

lambda, r := lambda, r+ (trap.r+tmpl.r)

lambda.i := lambda.i+(tmp.i+tmpl.i)

IF

P<O.O(KEAL32)

STOP

P>O.O(REAL32)

SKIP

IF

(delta>O.O(REAL32))

(gamma>O.O(REAL32))

SKIP

TRUE

rl

r2

STOP

AND (delta<l.O(REAL32)) AND

AND (gamma<l.O(REAL32))

Time update of "a" vector; order updates of c,d

vectors and Eamma, del%a, lambda scalars.

:= 1.O(REAL32)/P

:= 1.O(REAL32)/((delta*gamma) -

CMag2 (iambda, r olambda, i))

EF.r := x.r[M+l]

EF.i := x.i[M+l]

EB.r := x.r[N-M]

EB.i := x.i[N-M]

SEQ I=l FOR M

SEQ

CMul(a.r If] ,a.i[I] ,x.r [(M+l)-I] ,x.i[(M+l)-I],

trap.r ,imp. i)

EF.r := EF.r+tmp.r

EF.i := EF.i+tmp.i

70

CMul (a. r [I], -a. i[I], x. r [(N-M) +I] ,x. i [(N-M) +I] ,

trap.r ,trap.i)

EB.r := EB. r+tmp.r

EB.i := EB.i+tmp.i

CSmul(EB.r,EB.i,r1,Cl.r,Cl.i)

CSmul (EF. r, -EF. i,r 1,C2. r, C2. i)

CMul (EF. r, EF. i,iambda, r, lambda, i,trap.r,trap.i)

CAdd (%mp. r, imp. i, (delt a*EB. r), ((-delta) *EB. i),

%mpl.r,tmpl.i)

CSmul (tmp i.r, %mpl. i ,r2 ,C3. r,C3. i)

CMul (EB. r,EB. i, lambda, r,lambda, i ,trap.r, trap.i)

CAdd(tmp. r, -tmp. i, (ga_una*EF. r), (ga_una*EF. i),

tmpl. r,tmpl, i)

CSmul (imp i.r, tmpl. i,r2, C4. r,C4. i)

J :=M

WHILE J>O

REAL32 %mp.r,tmp.i :

SEQ

savel.r := a.r[J]

savel.i := a.i[J]

CMul (C3.r,C3. i,c.r [J] ,c.i[J] ,tmp.r,tmp. i)

CAdd(savel. r, savel, i,tmp.r, %rap.i, a.r [J] ,a.i[J])

CMul (C4.r,C4. i,d.r [J] ,d.i [J] ,tmp.r,tmp. i)

a.r[J] := a.r[J]+tmp.r

a.i[J] := a.i[J]+tmp.i

CMul (Cl .r ,Cl. i,save i.r, save1, i ,trap.r, tmp. i)

c.r[J+l] := c.r[J]+tmp.r

c.i[J+l] := c.i[J]+tmp.i

CMul(C2.r,C2.i,savel.r,savel.i,tmp.r,tmp.i)

d.r[J+l] := d.r[J]+tmp.r

d.i[J÷l] := d.i[J]+tmp.i

J := J-i

c.r[1] := Cl.r

c.i[1] := Cl.i

d.r[l] := C2.r

d.i[l] := C2.i

r3 := CMag2(EB.r,EB.i)

r4 := CMag2(EF.r,EF.i)

CMul (EB .r ,EB. i,lambda, r, Iambda, i ,trap.r ,trap.i)

CMul (trap.r ,trap.i ,EF .r ,EF. i ,trapI.r,tmpl, i)

P := P- (r2*((r3*delta)+((r4*gax_ma)+

(2.0 (REAL32)*tmp1. r))))

delta := delta-(r4*rl)

gamma := ga_una-(r3*rl)

CMul (EF. r, EF. i,EB. r,EB. i,trap.r, trap.i)

l_unbda.r := lambda.r+(rl*tmp.r)

l_unbda.i := lambda.i-(rl_tmp.i)

IF

71

P<O. O(REAL32)

STOP

P>O. O(REAL32)

SKIP

IF

(delta>O.O(REAL32)) AND (delta<1.0(REAL32)) AND

(gamma>O.O(REAL32)) AND (gamma<1.0(REAL32))

SKIP

TRUE

STOP

.t

i

T2

REFERENCES

[1] T. T. Fujita. "The Downburst-Microburst and Macroburst". SMRP Research

Paper No. 210, Univ. of Chicago, 1985. (available from NTIS as PB85-148-880).

[2] J. McCarthy and R. Serafin. "The Microburst: Hazard to Aviation". Weather-

wise, vol. 37, no. 3, 1984, pp. 120-127.

[3] D. Atlas, editor. "Radar in Meteorology". American Meteorological Society,

Boston, 1990.

[4] C. L. Britt. "Users Guide for an Airborne Windshear Doppler Radar Simulation

(AWDRS) Program". NASA CR-182025, DOT/FAA/RD-91/2, June 1990.

[5] R. L. Bowles and R. Targ. "Windshear Detection and Avoidance: Airborne

Systems Perspective". Presented at the 16 th Congress of the ICAS, Jerusalem,

Israel, August 28 - September 2, 1988.

[6] P. L. Smith, Jr., K. R. Hardy, and K. M. Glover. "Applications of Radar to

Meteorological Operations and Research". Proceedings of the IEEE, vol. 62,

June 1974, pp. 724-745.

[7] R. M. l_?hermitte. "Probing of Atmospheric Motion by Airborne Pulse-Doppler

Radar Techniques". J. Appl. Meteor., vol. 10, April 1971, pp. 234-246.

[8] L. J. Battan. Radar Observations of the Atmosphere. University of Chicago

Press, Chicago, 1973.

[9] D. Atlas. "Advances in Radar Meteorology". Advan. in Geophys., vol. 10, 1964,

pp. 317-478.

[10] M. I. Skolnik, editor. Radar Handbook. McGraw Hill, New York, NY, 1990.

Ill] R. J. Doviak and D. S. Zrnid, editors. Doppler Radar and Weather Observations.

Academic Press, Orlando, Florida, 1984.

[12] E. M. Bracalente, R. W. Jones, and C. L. Britt. "Airborne Doppler Radar
Detection of Low Altitude Windshear". Presented at the AIAA Conference

on Sensor and Measurement Techniques for Aeronautical Application, Atlanta,

Georgia, September 7-9, 1988.

[13] J. E. Evans. "Ground Clutter Cancellation for the NEXRAD System". Project

Report ATC-122, Lincoln Laboratory, 1983. (available from NTIS).

[14] B. M. Keel. "Adaptive Clutter Rejection Filters for Airborne Doppler Weather

Radar Applied to the Detection of Low-altitude Windshear". NASA CR-1862I I,

December 1989.

[15] B. M. Keel and E. G. Baxa, Jr. "Adaptive Least Square Complex Lattice Clutter

Rejection Filters Applied to the Radar Detection of Low Altitude Windshear".

In Proc. Int. Conf. Acoust., Speech, Sig. Proc., Albuquerque, April 1990, pp.

1469-1472.

[16] R. H. Daly and J. M. Glass. "Digital Signal Processing for Radar". Electronic

Progress, vol. 17, no. 1, 1975, pp. 24-30.

[17] J. J. Sitterle. "Estimation of Spectral Moments in Small Wavelength Doppler

Weather Radar". Master's thesis, Clemson University, Clemson, SC, August

1983.

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

W. D. Rummler. "Introduction of a New Estimator for Velocity Spectral Parame-

ters". Tech. Memo. MM-68-4121-5, Bell Telephone Laboratories, Whippany, N J,

1968.

R. J. Doviak, D. S. Zrnid, and D. S. Sirmans. "Doppler Weather Radar". Pro-

ceedings of the IEEE, vol. 67, November 1979, pp. 1522-1553.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.

Walker. Solving Problems on Concurrent Processors Volume L Prentice Hall,

Englewood Cliffs, New Jersey, 1988,

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, Palo Alto, CA, 1989.

"Real-Time Signal Processor Development". Final Report RTI/4500/02-01F,

Prepared for NASA, Contract NAS1-18925, Research Triangle Institute, January

1991.

Published by the IEEE, New York, NY. "IEEE Standard for Binary Floating-

Point Arithmetic", ANSI/IEEE Std 754-1985, 1985.

W. R. Jones, O. Alitz, P. R. Schaffner, J. H. Schrader, and J. H. C. Blume.

"Description, Characteristics, and Testing of the NASA Airborne Radar". NASA

Conference Publication 10060, DOT/FAA/RD-9I/2-II, January 1991, pp. 939-

978.

[25] G. M. Amdahl. "Validity of the Single Processor Approach to Achieving Large-

Scale Computing Capabilities". Proc. AFIPS, 30:483-485, 1967.

[26] D. L. Eager, J. Zahorjan, and E. D. Lazowska. "Speedup Versus Emciency in

Parallel Systems". IEEE Transactions on Computers, vol. 38, March 1989, pp.

408-423.

[27]

[28]

J. L. Gustafson. "Reevaluating Amdahl's Law". Communications of the ACM,

vol. 31, no. 5, May 1988, pp. 532-533.

T. Feng. "A Survey of Interconnection Networks". Computer, vol. 14, no. 12,

December 1981, pp. 12-27.

74

[29]

[3o]

[31]

[32]

J. Wexler and D. Prior. "Solving Problems with Transputers: Background and

Experience". Microprocessors and Mierosystems, vol. 13, no. 2, March 1989, pp.
67-78.

D. Pountain. "Occam II". BYTE, vol. 14, no. 10, October 1989, pp. 279-284.

C.A.R. Hoare. "Communicating Sequential Processes". Communications of the

ACM, vol. 21, no. 8, August 1978, pp. 666-677.

K. S. Miller and M. M. Rochwarger. "A Covariance Approach to Spectral Mo-

ment Estimation". IEEE Transactions on Information Theory, vol. 18, 1972, pp.
588-596.

[33] D. S. Zrnid. "Estimation of Spectral Moments for Weather Echoes". IEEE

Trans. Geosci. Electron., vol. GE-17, no. 4, October 1979, pp. 113-128.

[34] The Digital Signal Processing Committee, IEEE Acoustics, Speech, and Signal

Processing Society, editor. "Programs for Digital Signal Processing". IEEE

Press, New York, NY, 1979.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

D. M. W. Evans. "An Improved Digit-Reversal Permutation Algorithm for the

Fast Fourier and Hartley Transforms". IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. ASSP-35, no. 8, August 1987, pp. 1120-1125.

J. S. Walker. "A New Bit Reversal Algorithm". IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. ASSP-38, no. 8, August 1990, pp. 1472-1473.

F. J. Harris. "On the Use of Windows for Harmonic Analysis with the Discrete

Fourier Transform". Proceedings of the IEEE, vo]. 66, no. l, January 1978, pp.
51-83.

S. M. Kay and S. L. Marple. "Spectrum Analysis--A Modern Perspective".

Proceedings of the IEEE, vol. 69, no. ll, November 1981, pp. 1380-1419.

J. Gibson, S. S. Haykin, and S. B. Kesler. "Maximum Entropy (Adaptive)

Filtering Applied to Radar Clutter". In Rec. IEEE Int. Conf. Acoustics, Speech,

and Signal Processing, 1979, pp. 166-169.

S. S. Haykin, editor. Nonlinear Methods of Spectral Analysis. Springer-Verlag,
New York, 1979.

F. M. Hsu and A. A. Giordano. "Line Tracking Using Autoregressive Spectral

Estimates". IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. 25, December 1977, pp. 510-519.

M. Kaveh and G. R. Cooper. "An Empirical investigation of the Properties

of the Autoregressive Spectral Estimator". IEEE Transactions on Information

Theory, vol. 22, May 1976, pp. 313 323.

75

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[5o]

[51]

[52]

[53]

[54]

S. B. Kesler and S. S. Haykin. "The Maximum Entropy Method Applied to the

Spectral Analysis of Radar Clutter". IEEE Transactions on Information Theory,

vol. 24, March 1978, pp. 269-272.

S. B. Kesler and S. S. Haykin. "Maximum Entropy Estimation of Radar Clutter

Spectra". In Natl. Telecommunications Conf. Rec., Birmingham, AL, December

3-6 1978, pp. 18.5.1-18.5.5.

J. H. Sawyers. "Applying the Maximum Entropy Method to Adaptive Digital

Filtering". Conference Record- Twelfth Asilomar Conf. on Circuits, Systems,

gd Computers, 78CHI 369 8, IEEE, November 1978, pp. 198-202.

R. Nitzberg. "Spectral Estimation: An Impossibility?". Proceedings of the IEEE,

vot. 67, March 1979, pp. 437-439.

J. Park. "Spectral Analysis of Time Series Using Periodogram and Maximum

Entropy Methods". Master's thesis, Clemson University, Clemson, SC, August
1983.

S. L. Marple. Digital Spectral Analysis with Applications. Prentice-Hall, Engle-

wood Cliffs, N J, 1987.

H. Akaike. "Power Spectrum Estimation through Autoregression Model Fitting".

Ann. Inst. Stat. Math., vol. 21, 1969, pp. 407-419.

H. Akaike. "A New Look at the Statistical Model Identification". IEEE Trans.

Autom. Control, vol. 19, December 1974, pp. 716-723.

E. Parzen. "Some Recent Advances in Time Series Modeling". IEEE Trans.

Autom. Control, vol. 19, December 1974, pp. 723-730.

T. J. Ulrych and R. W. Clayton. "Time Series Modeling and Maximum En-

tropy". Phys. Earth Planet. lurer., vol. 12, August 1976, pp. 188-200.

P. R. Mahapatra and D. S. Zrnid. "Practical Algorithms for Mean Velocity

Estimation in Doppler Weather Radars Using a Small Number of Samples".

IEEE Trans. Geosci. Electron., vol. GE-21, October 1983, pp. 491-501.

E. G. Baxa, Jr. "Signal Processing Techniques for Clutter Filter and Winds-

hear Detection". NASA Conference Publication 10060, DOT/FAA/RD-91/2-II,

January 1991, pp. 870-886.

___-
|
m

|

__=*

76

REPORT DOCUMENTATION PAGE FormApproved
OMB NO. 0704-0188

Public reporting burden for this collect*on of =nformat=On :s estqmatecl to average .] hour De r response, mctuding the tame for reviewm _ instrucXion$_ searching existing data sources,
gathenn 0 and mamta fling the data needea, anocomp!et!ng and rewt_wm9 tree <OlleCt_on.oT =ntormat=On ,end comments rec)ardtng this _rden estimate or any other as_oecl of thJ_
coiled*on of information, d_cludlf_g suggest*on$ tot reducing tn=s ouroen lo wa$n_ngton Heeoquarser$,erv=ces, ulrec-Iotate for IrltOfmatloirl O_rBtiol't$ af_l Reports, 1215 Jefferson
Davis H*ghway, Suite 1204. Arlington, VA 22202-4]02. and tO the Office of Management and Budget. Paperwork Reduction Project (0704-01BB). Washington, DC 20503

1. AGENCY USE ONLY _eave blank) I 2. REPORT DATE

I August 1992

4. TITLE AND SUBTITLE

Real-Time Processing of Radar Return on

Computer

6. AUTHOR(S)

David D. Aalfs

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Radar Systems Laboratory

Electrical and Computer Engineering Department
Clemson University

Clemson, SC 29634-0915

g. SPONSORING/MONITORINGAGENCYNAME(S)ANO ADORESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3.REPORTTYPE AND DATES COVERED

Contractor Report
5. FUNDINGNUMBERS

a Parallel

G NGT-50414
WU 505-64-12-02

B. PERFORMING ORGANIZATION
REPORT NUMBER

TR 14

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

NASA CR-4456
DOT/FAA/RD-92/20

11.SUPPLEMENTARYNOTES

Langley Technical Monitor:

Final Report

Anne I. Mackenzie

12a. OISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 03

RA_T_A_o_A_VW_0t_d_.4Ato demons_atethe feasibflltyofpulseDopplerradaras a candidate
airborne sensor to detect low altitude windshears. The need to provide the pilot with timely informa-
tion about possible hazards has motivated a demand for real-time processing of a radar return. This
thesis investigates parallel processing as a means of accommodating the high data rates required. A PC
based parallel computer, called the transputer, is used to investigate issues in real time concurrent
processing of radar signals. A transputer network Is made up of an array of single instruction stream
processors that can be networked in a variety of ways. They are easily reconfigured and software devel-
opment is largely independent of the particular network topology. The performance of the transputer is
evaluated in light of the computational requirements. A number of algorithms have been implemented
on the transputers in OCCAM, a language specially designed for parallel processing. These include
signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive
modeling, as well as routing software to support concurrency. The most computationally intensive tas_
is estimating the spectrum. Two approaches have been taken on this problem, the first and most con-
ventional of which is to use the FFT. By ustng table Iook-ups for the basis function and other optim-
izing techniques, an algorithm has been developed that is sufficient for real time. The other approach
is to model the signal as an autoregresslve process and estimate the spectrum based on the model
coefficients. This technique is attractive because it does not suffer from the spectral leakage problem
inherent in the FFT. Benchmark tests indicate that auto regresslve modeling is feasible in real time.
1-4. SUBJECT TERMS

windshear detection, pulsed Doppler radar, real-time processing,

parallel processing, transputers, OCCAM language, signal

processing requirements and performance

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFIcATIoN 19. 'SFCURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified
NSN 7540-01-2B0-5500

15. NUMBER OF PAGES

84

16. PRICE CODE

A05

20. LIMITATION OF ABSTRACT

Standard _:orm 298 (Rev 2-89)
Pre_:r=bed by AN¢.I q;td Z39-18
298-102

NASA-Langley, 1992

s

F

L

